Drug Screen Targeted at Plasmodium Liver Stages Identifies a Potent Multistage Antimalarial Drug

نویسندگان

  • Filipa P. da Cruz
  • Cécilie Martin
  • Kathrin Buchholz
  • Maria J. Lafuente-Monasterio
  • Tiago Rodrigues
  • Birte Sönnichsen
  • Rui Moreira
  • Francisco-Javier Gamo
  • Matthias Marti
  • Maria M. Mota
  • Michael Hannus
  • Miguel Prudêncio
چکیده

Plasmodium parasites undergo a clinically silent and obligatory developmental phase in the host's liver cells before they are able to infect erythrocytes and cause malaria symptoms. To overcome the scarcity of compounds targeting the liver stage of malaria, we screened a library of 1037 existing drugs for their ability to inhibit Plasmodium hepatic development. Decoquinate emerged as the strongest inhibitor of Plasmodium liver stages, both in vitro and in vivo. Furthermore, decoquinate kills the parasite's replicative blood stages and is active against developing gametocytes, the forms responsible for transmission. The drug acts by selectively and specifically inhibiting the parasite's mitochondrial bc(1) complex, with little cross-resistance with the antimalarial drug atovaquone. Oral administration of a single dose of decoquinate effectively prevents the appearance of disease, warranting its exploitation as a potent antimalarial compound.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New approach for high-throughput screening of drug activity on Plasmodium liver stages.

Plasmodium liver stages represent potential targets for antimalarial prophylactic drugs. Nevertheless, there is a lack of molecules active on these stages. We have now developed a new approach for the high-throughput screening of drug activity on Plasmodium liver stages in vitro, based on an infrared fluorescence scanning system. This method allowed us to count automatically and rapidly Plasmod...

متن کامل

Clinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...

متن کامل

A chemical rescue screen identifies a Plasmodium falciparum apicoplast inhibitor targeting MEP isoprenoid precursor biosynthesis.

The apicoplast is an essential plastid organelle found in Plasmodium parasites which contains several clinically validated antimalarial-drug targets. A chemical rescue screen identified MMV-08138 from the "Malaria Box" library of growth-inhibitory antimalarial compounds as having specific activity against the apicoplast. MMV-08138 inhibition of blood-stage Plasmodium falciparum growth is stereo...

متن کامل

Clinical Pharmacology of the Antimalarial Artemisinin-Based Combination and other Artemisinins in Children

In 2010, there were estimated 219 million cases of malaria resulting in 666,000 deaths and two-thirds were children. Children are more vulnerable than adults to malaria parasites. In sub-Saharan African countries, maternal malaria is associated with up to 200,000 estimated infant deaths yearly. Malaria is caused by five Plasmodium parasites namely: Plasmodium falciparum, Plasmodium vivax, Plasm...

متن کامل

Small molecule inhibition of apicomplexan FtsH 1 disrupts plastid biogenesis in 1 human pathogens

13 The malaria parasite Plasmodium falciparum and related apicomplexan pathogens 14 contain an essential plastid organelle, the apicoplast, which is a key anti-parasitic 15 target. Derived from secondary endosymbiosis, the apicoplast depends on novel, but 16 largely cryptic, mechanisms for protein/lipid import and organelle inheritance 17 during parasite replication. These critical biogenesis p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 205  شماره 

صفحات  -

تاریخ انتشار 2012